Inhibition by botulinum toxin of depolarization-evoked release of (14C)acetylcholine from synaptosomes in vitro.

نویسندگان

  • S Wonnacott
  • R M Marchbanks
چکیده

1. Cerebral-cortex synaptosomes were shown to synthesize (14C)acetylcholine after incubation with (14C)choline, and 25mM-KCl released (14C)acetylcholine (but not (14C)choline) into the medium by a Ca2+-dependent and Mg2+-sensitive process. 2. The K+-stimulated release of (14C)acetylcholine was inhibited by more than 80% after preincubation of the synaptosomes with 10(5) mouse lethal doses of botulinum toxin/ml. (14C)choline uptake, (14C)acetylcholine synthesis, intrasynaptosomal K+ and occluded lactate dehydrogenase were unaffected by the toxin. It also failed to prevent the K+-stimulated release of (3H)noradrenaline and (14C)glycine from synaptosomes. 3. Fractionation of hypo-osmotically shocked synaptosomes revealed that more than 75% of the radioactive acetylcholine was in the cytoplasmic compartment, although the vesicle pellet contained more total acetylcholine than the cytoplasmic pool. Consequently the specific radioactivity of acetylcholine in the cytoplasmic pool was almost 5 times that of the vesicles. This distribution was unaffected by preincubation with botulinum toxin. It is concluded that the toxin acts directly on the release of acetylcholine, rather than influencing its storage. 4. After K+-stimulation, toxin-inhibited synaptosomes contained increased amounts of total acetylcholine, which suggests that its rate of synthesis is controlled by depolarization rather than release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Botulinum toxin type A blocks the morphological changes induced by chemical stimulation on the presynaptic membrane of Torpedo synaptosomes.

The action of botulinum neurotoxin on acetylcholine release, and on the structural changes at the presynaptic membrane associated with the transmitter release, was studied by using a subcellular fraction of cholinergic nerve terminals (synaptosomes) isolated from the Torpedo electric organ. Acetylcholine and ATP release were continuously monitored by chemiluminescent methods. To catch the membr...

متن کامل

Pii: S0306-4522(98)00475-8

Whether exocytosis evoked by a given releasing stimulus from different neuronal families or by different stimuli from one neuronal population occurs through identical mechanisms is unknown. We studied the release of [3H]noradrenaline, [3H]acetylcholine and [3H]dopamine induced by different stimuli from superfused rat brain synaptosomes pretreated with tetanus toxin or botulinum toxin F, known t...

متن کامل

Cerebellar Giant Synaptosomes: a Model to Study Basal and Stimulated Release of [3H]gamma-Aminobutyric Acid

Background: Neurotransmitter release is an essential link in cell communication of the nervous system. Many investigations have focused on gamma amino butyric acid (GABA)-ergic neurotransmission, because it has been implicated in the pathophysiology of several central nervous system disorders. To bypass complications related to homo- and heterosynaptic modulation and to avoid indirect interpret...

متن کامل

Involvement of KCNQ2 subunits in [3H]dopamine release triggered by depolarization and pre-synaptic muscarinic receptor activation from rat striatal synaptosomes.

KCNQ2 and KCNQ3 subunits encode for the muscarinic-regulated current (I(KM)), a sub-threshold voltage-dependent K+ current regulating neuronal excitability. In this study, we have investigated the involvement of I(KM) in dopamine (DA) release from rat striatal synaptosomes evoked by elevated extracellular K+ concentrations ([K+]e) and by muscarinic receptor activation. [3H]dopamine ([3H]DA) rel...

متن کامل

Transmitter release from presynaptic terminals of electric organ: inhibition by the calcium channel antagonist omega Conus toxin.

Cholinergic synaptosomes from electroplax of the ray Ommata discopyge release both ATP and ACh when depolarized with high K+ concentration in the presence of Ca2+. Others have shown that the ATP and ACh are released in the molar ratio found in isolated synaptic vesicles. Thus, it is assumed that the release of ATP reflects exocytosis of synaptic vesicles, and that transmitter release can be ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 156 3  شماره 

صفحات  -

تاریخ انتشار 1976